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Non-integrability of non-linear diffusion-convection equations 
in two spatial dimensions 
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Received 21 January 1985, in final form 28 August 1985 

Abstract. It is generally accepted that integrable partial differential time evolution equations 
possess Lie-Backlund symmetries of arbitrarily high finite order. It has already been 
established that in (1 + 1) dimensions the full class of non-linear Fokker-Planck (convec- 
tion-diffusion) equations having this property consists of the known integrable examples. 
These are closely related either to the Burgers equation or to the Fokas-Yortsos-Rosen 
equation, both of which have been applied to unsaturated flow in porous media. Here we 
show that higher-order Lie-Backlund symmetries do not exist for any examples of the 
non-linear Fokker-Planck equation in ( 1  + 2 )  (one time and two space) dimensions. 

1. Introduction 

For situations in which the moisture field in a non-swelling homogeneous isotropic 
porous medium is monotonic in time, the unsaturated flow is governed by the non-linear 
Fokker-Planck equation (Klute 1952, Philip 1969a): 

(1) 

where e( t, x) is the volumetric moisture fraction. Laboratory measurements show that 
for typical soils, the diffusivity D and conductivity K may each increase by a factor 
of lo3 or more as 8 is varied from near dryness to near saturation. Although equation 
(1) is parabolic, in one-dimensional systems it admits a finite-speed travelling wave 
solution at large times, provided the curve for the K ( 6 )  relationship is concave upwards 
(Philip 1957a), which is the case for all common soils. 

It must be stressed that in this application the convective term in (1) reflects the 
local gravitational field and is unidimensional in character. In the absence of gravity, 
equation ( 1) would describe an isotropic diffusion process but in practical applications, 
the presence of one or both of gravity and multi-dimensional source geometry leads to 
solutions quite different from the pure one-dimensional diffusion model (Philip 
1969a, b). In the presence of gravity, we lose both isotropy and additional symmetry 
based on similarity variables (e.g. the Boltzmann variable zt-'12 for one-dimensional 
pure diffusion). In this respect, the related soluble non-linear wave equation, in which 
the radial coordinate ( x2 + z2)'12 replaces t and the d'Alembert variable z - ct replaces 
z in (1) (Bartucelli and Pantano 1983), is not relevant to the exacting physical problem 
discussed here. 

In many important physical applications, unsaturated flow is essentially multi- 
dimensional in character (e.g. Philip 1983). However, for time evolutions of the type 

8, = V * ( D( 8)V 8 )  - ( d K / d 8 ) d  8 / d  2, 
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( l ) ,  with convective and diffusive terms both non-linear, we know of no exact unsteady 
solutions in (1 + 2) dimensions. Therefore, we should examine the known methods of 
obtaining exact time-dependent solutions in (1 + 1) dimensions with a view to extension. 
Any barely relevant solvable (1 + 2)-dimensional system would at least provide a test 
for the numerical schemes currently aimed at more realistic physical situations. 

In 0 2 we re-examine the known techniques of exact solution. Integrable (1 + 
1)-dimensional systems have previously been exposed using the general theory of 
Lie-Backlund symmetries. The known integrable equations possess Lie-Backlund 
symmetries of arbitrarily high finite order. Having adopted this as a general property 
of integrable equations, in 0 4 we establish our principal result: in one time and two 
space dimensions, there is no integrable non-linear scalar Fokker-Planck equation. 

2. Known techniques for exact solution 

We assume the initial condition e(0, z) = 0, in the region z > 0. Given concentration 
boundary conditions e ( t , O ) =  Bo and e-, 8, as z + q  (1) may be solved in the 
(1 + 1)-dimensional case by the quasi-analytic method of Philip (1957b). For cylindrical 
or spherical symmetry, this method may be used to determine a small-t solution 
consisting of the first three terms in the expansion of r ( 0 )  as a power series in I”’ 
(Philip 1969b). For large t ,  the moisture field may be approximated by known steady 
solutions (Philip 1984). 

In (1 + 1) dimensions the best known integrable non-linear example of (1) is Burgers’ 
equation 

ae a2e a e  
a t  az az 
- = D ~ - ( a 1 9 + 6 ) -  D constant. 

The exact solution of (2) for the case of constant flux boundary conditions has been 
used by Clothier et al (1981) to model the infiltration of a field soil during steady 
rainfall. Burgers’ equation may be solved by applying the Hopf-Cole transformation 
(Hopf 1950, Cole 1951) 

ae + 6 = - 2 ~ u - I  aulaz. (3) 
Then (2) becomes 

U = @(z ,  t )  is a solution to (4) if and only if 

a4 3’4 --D,= c ( t ) @ ,  
a t  az 

for some function c of t. Generalising (3), we define a generalised Hopf-Cole transfor- 
mation as a relation of the type 6 =f( U, uz), with f almost everywhere twice differenti- 
able on Rz. However, this definition is too restrictive since it may be proved, using 
the method of Nimmo and Crighton (1982), that in (1 + 1) dimensions only Burgers’ 
equation may be linearised by such a device and that in (1 + 2) dimensions, no such 
linearisation of any equation of type (1) is possible (Broadbridge 1985). In fact, the 
more general theory of Lie-Backlund transformations has already been successful in 
exposing other solvable equations of type ( l ) ,  and we should now turn in this direction. 
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A time evolution equation 

U, = K(t,  Z, U, ul,  . . * 9 U n ) ,  ( 6 )  

with K a polynomial in U and its spatial derivatives uj up to nth order, determines a 
flow 

U(& t )  = Iztu(z, 0). (7) 

A flow v ( z ,  t )  = &(z, 0), determined by a time evolution equation of order rn, v ,  = 
L( t, z, v, v l : .  . . , vm],  is said to be a one-parameter symmetry group for equation (6) if 
the flows K ,  and L, commute, 

for all SE C"(R) and all s,t in some non-empty open interval in 03, containing 0. In 
infinitesimal form the symmetry L, is expressed 

U * = U + S L ( ~ , Z , U , U  ,,..., u m ) + 0 ( s 2 ) .  (8) 

For example, if 4 satisfies ( 5 ) ,  then so does d,, = (a/&)"+. Therefore, by superposition, 
the linear equation (5)  (and hence (4)) is left invariant by mth-order infinitesimal 
transformations of the type 

U*= U + S  ajuj -to(?) aj E R 
( j : l  ) 

t * = t  z* = 2. 

Transformations of the type (9), in which U: depend on progressively higher-order 
derivatives as i increases, may be viewed as Lie-Backlund contact transformations on 
a necessarily infinite-dimensional (t,  z, U, U,, . . . , uj, . . .) space (Ibragimov and Ander- 
son 1977). In the general case ( 6 ) ,  an obvious symmetry is given by f, = k,. In the 
particular case with K = c (  t )  + u2, from (9) one may obviously generate a chain of 
symmetries 

~ ( j )  = (a/az)'K = u ~ + ~  

The symmetry recursion operator a/az is nothing other than the generator of the space 
translation symmetry group for equation (51, 

U ( Z + S ,  t )=exp(sa/az)  u(z, t).  

After applying the Hopf-Cole transformation (3), this chain of elementary sym- 
metries for the linear diffusion equation transforms to a chain of non-trivial symmetries 
for the Burgers' equation (Bluman and Kumei 1980, Olver 1977). The existence of 
Lie-Backlund symmetries L of arbitrarily high finite order rn is perceived as a general 
property of integrable evolution equations (e.g. Fokas 1980). In fact, the existence of 
any generalised Lie-Backlund symmetry has proven to be a stringent requirement. For 
example, Bluman and Kumei (1980) have shown that if a non-linear diffusion equation 

a e  a 
a t  a z  
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possesses any such symmetry other than a Lie contact transformation, then D must 
have the form 

D ( e ) = ( y + p e ) - ’  Y , P E R .  (11) 

The equations (10) and (11) had already been used to obtain explicit solutions for 
horizontal (gravity-free) unsaturated flow by Knight and Philip (1974) by reinterpreting, 
with some correction, the work of Storm (1951). In the approach of Fokas (1980), 
one proceeds io find integrable equations after assuming the existence of a symmetry 
recursion operator A which maps z translation to t translation. Such a recursion 
operator exists for almost all known integrable time evolution equations. However, 
for the infiltration equation ( l ) ,  such a recursion operator exists only if D is of the 
form (11) and 

K ’( e )  = -aD( 6 )  a;.O (12) 
as demonstrated by Fokas and Yortsos (1982), who applied this version of equation 
(1) to gravity-free two-phase unsaturated flow. Subsequently, Rogers et al (1983) 
found an explicitly solvable model of the type (11) but with 

r ( e )  = - c u ( p e + y ) - * [ i + E ( e - ~ ) ] [ ( - c u / P ) ( p e + ~ ) - ~ + 8 ] ~ e ,  8, E ,  4 E R, 
allowing gravity to be incorporated in the model of two-phase unsaturated flow. 

The system ( l ) ,  (1 1) and (12) with constant flux boundary conditions transforms 
to Burgers’ equation under a combination of the well known Kirchhoff (1894) and 
Storm (1951) transformations 

with R the fixed moisture flux at the surface z = 0. 
The explicitly solvable system ( l ) ,  (11) and (12) has also been noticed by Rosen 

(1982), who applied it to a chemical substance subject to diffusion, convection and 
adsorption to the walls of a porous medium. Rosen’s unnamed transformations 
( c  + 8, x + 2 and 6 -$ +) are essentially the Kirchhoff transformation (13), the Storm 
transformation (14) and the Hopf-Cole transformation (3), respectively. 

It must be stressed that the above results apply only in one spatial dimension. 
However, the theory of Lie-Backlund symmetries has produced useful results and it 
is natural to direct the same theory at two spatial dimensions. 

3. Non-integrability in two spatial dimensions 

Applying the Kirchhoff transformation (13), the (1 + 2)-dimensional version of equation 
(1) becomes 

a@ 
a t  
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We shall search for infinitesimal Lie-Backlund symmetries of the form 

X*  = ;; t *=  t 

O* = + SL(X, z, t, { B ~ , ~ ;  i + j s n}) + 0(s2)  

[ 0 i,j = (5) (;)e( t, x, z ) ] .  

The procedure adopted will largely be that used by Bluman and Kumei (1980) for the 
non-linear diffusion equation. Equation (18) extends to derivatives of @* via 

@; = ( D , ) ~ ( D , ~ ( @ +  d)+o(s2)  (19) 

where D, and D, are respectively the total x derivative and total z derivative; 

and 

Similarly, D, will denote the total time derivative; 

a a@. 
a t  

with @i,j,t = >. a -  
a t  i,j=o a@i,j D,=-+  @i,j,t-, 

Since (17)  is supposed to be a symmetry for equation (16), 

a@* 
a t  

0 = - - E (@*)( 6g0+ @ g * 2 )  + P'( @*)@& 

= -s{  -D,L + LE'( @)(@2,0 + @ 0 , 2 )  + E (@)[ ( D,)2L + ( D,)2L] 

-P'(O)D,L- LP"(@)@O,~}+O(S') (by (16) and (17)). (21) 

Now time derivatives of @,, may be expressed solely in terms of space derivatives 
whenever 0 is a solution to the governing equation (16): 

a@( t, X, Z )  
@w=(;)'(;) a t  

= (D,)'(DzY{E(@)(@2,0+ @O,d - P'(@)@O,I}* 
Equation (21) then implies 

dL 0 = --- C Ll,,(Dx)'(D,YEE(@)(@2,0+ @o,z) - P'(@)@o,iI + LE'(@)(@>,o+ 0 0 , ~ )  
a t  

- P ' ( @ )  -+ c LIJ@I,J+l - LP"(@)@o,,. (:S i + j < n  ) 
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where 

L,, =aLlaOi,, and L,3j,kf =a2L/a@t,j  a@,]. 

We shall show that there cannot exist Lie-Backlund symmetries of arbitrarily high 
order n. The (n+2)-order terms in (22) vanish identically. However, (22) remains 
true for an arbitrary solution @( t, x, z) of (16). Therefore, (22) may be viewed as a 
polynomial equation in the ( n  + 1)th-order derivatives @ i , n + l - i .  Equating coefficients 
of second degree @ i , n + l - - l  @ j , n + l - j  terms on each side of (22), we obtain 

L , n , k , n - k  = 0 

&,n,k- l ,n-k+l  + Ll,n-l,k,n-k = 0 

k = 0 , .  . .  , n 

k =  1, .  . . , n 

~ l , n - l , k - l , n - k + I  + b , n - Z , k n - k  = O  = . . 9 

L n - l , l , k - l , n - k + l  + Ln,O,k,n-k = 0 k =  1,. . . , n 

k =  1 , .  . . , n +  1. Ln,O,k-l,n-k+l = 0 (23) 

Since Li,j,kf = Lkl,i,j, the system of equations (23) has only the trivial solution 
Li,n-i,kn-k=O for all i,k=O,. . . , n. That is, L is at most first degree in @ i , n - i :  

L = 

for some differentiable functions Fi and Gi. 

we now obtain 

n 

[ Fi( t, x, z, {akf ;  k + I s n - l})@i,fl-i + Gi( t, x, z, {ekf;  k + I S  n - l})], (24) 
i = O  

When we equate coefficients of first degree, ( n  + 1)th-order @ i , n + l - i  terms in (22), 

-E‘(@)[(  n - i + 2)@0,1 Li-Z,n-i+2 + ( z  - l)@l,oLi-l,n-i+l 

+ ( n  - i)@o,lLi,n-i+ ( i +  l)@l~oLi+l,fl- l- i]  = 0. (25e) 
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Equating coefficients of nth-order e,,-, terms in (25) ,  and using (24) ,  we obtain 

= 0, k=0,. . . , n - 1 aFn - 8FO - 
d @ k , n - l - k  8 e k n - I - k  

i =  I , .  . . , n-1  

aFI-1 =o, i =1,. . . , n -  1, k =  1,. . . , n -1. aF, + 

a@,,-, - k  d@k-1.n-k 

The system of equations (26)  is equivalent to 

a F, / a@ kn  - 1 -k  = 0, i=O, . . . ,  n, k = 0, . . . , n - 1. 

Therefore, summations & + l s n - l  in (25)  may be replaced by & + l s n - 2 .  Equating 
coefficients of  ( n  - 1)th-order @ k n - k - l  terms in (25)  and using (24) ,  the same argument 
as before shows that F, does not depend on @ k n - 2 - k .  We can show progressively that 
F, does not depend on n - 1, n - 2, n - 3 ,  . . . , first-order derivatives of 0. Therefore, 

F, = F,( t ,  x, z, 0). (27)  

In the following, we shall first assume E ' ( @ )  # 0 (case I). 
Equating coefficients of Ol,o terms in (25),  we obtain 

F, = 0 (28a)  

(28b)  

( i  - l ) E ' ( @ )  F,-,, i = 2 , .  . . , n - 1  ( 2 8 ~ )  ( i + l ) E ' ( @ ) F , + l  = 2 E ( 0 )  -- 

( 2 8 d )  

a FO 
a@ E ( @ )  - - E'(  0)  F2 = 0 

JF1-1 
a@ 

2 JFn-1 
n - 1  a@ - E(O)--E'(O)F,-I=O. 

Now we equate coefficients of O0,, terms in (25 )  and obtain 

Fn-, = 0 

2 dF - E ( @ )  >- E'(@)F,=O (29b)  n - 1  a@ 
a Fi 

(29c)  

( 2 9 4  

W e )  

( n  - i + 2)E'(  @)Fi-,  = 2 E ( @ )  - - ( n  - i ) E ' (  0) Fi for 2 6 i n - 1 a@ 
aFn 
a@ 

a Fo 
a@ 

Equations (28)-(29) have the general solution 

E ( @ ) - -  E ' (0 )Fn-2=0  

2E(@)--nE'(0)Fo=O. 

F2j = ( n i 2 ) g ( t ,  X, z)E(@)"12,  
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for some function g. That is, 

+G(t,x,z){@,; i + j s n - l } ,  

for some function G of order less than n. 
Balancing nth-order terms in (22), we obtain 

O =  -gEn/2[ (E”@&+ E ‘ @ , , )  ‘f-’ (’!/”)( n -2i ) ( @ 2 i + 2 , n - 2 i - 2 + @ 2 i , n . - 2 i )  

I = O  z 

-9 E”/’  ( n{2)@2i,n-2i 

a t  i = O  

+nE’E“’,( @l,odg+@o,l ax $)[ ( n{2)@2i,n-2i] 

+ E n ’ 2 + 1 ( ~ + - ~ )  a2g a2g n / 2  ( n/2 . ) @ 2 i , n - 2 i  

ax az i=o I 

@ i + l , n - I - i +  @ i , n - i  

+-gEn’2-1[(~-1)(Ef”+EE’’](@~,o+@&) n 
n / 2  ( n/2 . ) @ 2 , , n - 2 i  

2 r = O  1 

a’ G 
+ E  YIY1 ( @ i+ I , n  - 1 - i@j+ 1 , n  - 1 -j + @ i,n - i @ j , n  - j )  

i=o j = o  a@i,n-l- ia@,.n-l- j  
a2 G + 2 E Y 1  ( @ i+ 1,n - 1 + i @  j +  1 , I @  i,n - i @  j , l +  1) 

i=o 1 + j s n - 2  a @ l , n - l - i a @ j , ,  

0 2  i, n -2 i * - p’( @) E n / 2  - 

By considering second degree nth-order @i,n-i@j,n-j terms in (32), we obtain a set of 
equations for G analogous to equations (23) for L, implying that G is at most first 
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degree in ( n  - 1)th-order terms. That is, 
n - I  

L=gEnI2  f? ( n:2)@2i,n-2i+ 2 H i ( [ ,  x, z, { @ i ~ ; i + j r n - ~ } ) @ , , n - l - i  
i = O  i = O  

+ J ( t ,  x, 2, { @ l , , z + , s n - 2 H  (33) 

for some functions HI and J. 
By equating coefficients of nth-order x ( n  - 1)th-order @t,f l - ,@, ,n- l - ,  terms in (32), 

we deduce that the functions H ,  are independent of ( n  - 2)th-order derivatives @ l , n - 2 - I .  

Similarly, by equating consecutively coefficients of nth order x mth order ( m  = n - 
2, n -3, .  . . ,3) ,  we find that HI are of the first order at most. Now by equating the 
coefficients of @ 0 , n @ 0 , 2  in (321, we obtain 

dHo/d@o,l = f n ( n  - l)gE'(@)E"'2-'. (34a) 
If we had carried through this analysis of (1) in the original dependent variable 8, 

then the unmasked D'( 0 ) V  OV 8 term in (1) would have contributed -ng D""-'D'( e )  
to the left-hand side of (34a). Hence, (34a) is equivalent to 

aHo/ae0,, = a n ( n + 3 ) g ~ ' ( @ ) ~ " / ~ - ' .  (34b) 

Equation (34b) is already known from the one-dimensional case (equation (14) of 
Bluman and Kumei (1980)). However, in the two-dimensional case, we need also to 
balance cross products of x derivatives by z derivatives. By equating coefficients of 
@ 0 , n @ 2 , 0  in (32), we immediately obtain E ' (@) = 0. Unlike the one-dimensional case, 
there cannot exist high order ( n  3 4) Lie-Backlund symmetries for any non-linear 
diffusion equation in (1 + 2) dimensions. 

It now remains to address case 11, in which E ' ( @ )  = 0. We have not yet ruled out 
the possibility of a (1 + 2)-dimensional integrable Fokker-Planck equation which, like 
the (1 + 1)-dimensional Burgers' equation, contains a linear diffusive term and a non- 
linear convective term. As in case I, steps down to and including equation (27) remain 
valid. If, as before, we then equate coefficients of terms in (25), we obtain 
aFl /a@ = 0. That is, 

(35) Fl = FI(G x, z ) ,  

aFn/ax  = aFo/az = 0 

a F , / d z + a F , - , / a x  =o, 

for i = 0, . . . , n. 

Equations (25) then simplify to 

(36a) 

(36b) i = 1, . . . , n. 

terms in (22), we obtain Now from the nth-order 

dFi n - F i [ ( n  -i-l)P"(@)@o,1@i,,-,+~~"(@)@1,0@i-l,~-it1] 
i=o a t  i = O  

n 

a za@ i,n  - -, + E  c (V2Fi)0, , - ,+2E 1 @ t t l , n - l - z  + 
i = O  

n - I  n - I  a2 G 
+ E L  c (@ i + 1 ,n  - 1 - i @ k t  1, n - 1 - k + @ i,n - i@ k, n - k 

i = O  k = O  a @ i , n - l - i d @ l g n - l - k  

a2G 
+ 2 E y 1  (@ i + 1, n - 1 - i @  k + 1, I + @ i, n - i@ k, I + I ) 

i=o k + l r n - 2  a @ i . n - l - i a O ~ l  
aF. 

i = o  az 
-PI(@) =o. (37) 
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As before, by equating coefficients of second-degree nth-order Oi,n-i@kn-k terms in 
(37), we deduce that G is at most first degree in (n-1)th-order derivatives Oi ,n - l - i :  

L =  F i ( t , x , z ) O i , n ~ i + G ( t , x , z , { O ~ l ;  k + I ~ n - l } )  
i = O  

n n-1  

= Fi@i,n-i+ Hi(t, x, z, {a,,; k + l C  n -2})0i,n-1-i 
i = O  i = O  

+ J (  t ,  x, z, {ekl; k + I c n - 2)) 

for some differentiable functions J and Hi. 
Equating coefficients of first-degree nth-order Oi,n-i  terms in (37), we obtain 

JHO -- aFo+(n - l)FoP”(0)Oo,l+ FIP”(0)Ol,o+ EV2Fo+2E- 
a t  az 

a F O  
k + l G n - 2  aekl az 

@ , , + I -  P’(0 )  -= 0 aH0 +2E 2 - 

a Fi 
a t  

- - + Fi ( n - i - 1 ) Pf’( 0) eo, + ( i + 1 ) Prf  ( 0) 0, ,o Fi+ + E V2 Fi 

aHi-, aHi aHi-l 
ax az k + l G n - 2  a@,, +2E- +2E-+2E 1 - @ k + l , l  

1 C i S n - 1  (39b) 
a Hi a Fi - 0,,1+1- P ’ ( 0 )  -= 0 

k c l s n - 2  a@,, az 
+ 2 E  

aH”-, + E d H n - 1  -- aFn+ EV2Fn +2E- c -  @ k + l , l  
a t  ax k + l s n - 2  a@,, 

a Fn 
az 

- P ’ ( 0 )  -- FnP”Oo,l = 0. 

Then equating coefficients of ( n  - 1)th-order terms in (39), we obtain 

a Hi 
d@o,fl-2 

O=- 

a Hi 
a e n - 2 , o  

O=- 

i = l , .  . . , n - l  

i =O,.  . . , n -2  

aHi_, a Hi 
O =  + i = l ,  . . . ,  n-2; k = l ,  . . . ,  n-2, a@ k - 1, n - I - k k, n -2 - k 

( 4 0 4  

which implies that the functions Hi are independent of ( n  - 2)th-order derivatives 
0j,n-2-j. Similarly, by consecutively equating coefficients of terms of order ( n  - 2), ( n  - 
3) ,  . . . , 2  in (39), we deduce that the functions Hi do not depend on derivatives e,, 
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of order ( n  - 3), ( n  - 4), . . . , 1. That is, 

Hi = Hi( t, x, z, 0). 

Now equating coefficients of terms in (39), we obtain 

1255 

(41) 

(otherwise, the governing equation (16) reduces to the linear case) 

( i +  1)P”(0)Fi+ ,+2E aHi-,/aO =0, i = l , .  . . , n - 1  (42b) 

aH,-,/a@ = 0. (42c) 

Equating coefficients of O0,, terms in (39), we obtain 

O=(n-j-1)F,P”(0)+2EdHj/a0, j = O , . .  . , n - 1  (43 a 1 
F,, = O .  (43b) 

From (42a, b)  and (43a), it follows that 

aHj/aO = 5. = o V odd j .  (44) 

Consequently, by (36), F, = q(t) for all even j. 
If n is even, then it follows from (42b, c) and (43) that 6 vanishes also for all even 

j and hence L does not depend on nth-order derivatives Oi,n-i. There remains the case 
that n is odd. From (42) and (43), we then have 

(456) 
n-1)  -- aH,,- -- P”(0) (n--2j- l ) ( ’ (  

a@ 2E ) ~ , ( r )  f o r j  = 1 , 2 , .  . . , ( n  - l ) /2 .  

We may identify the ( n  - 1)th-order terms in (22), after applying the repeated binomial 
expansion 

From the ( n  - 1)th-order @ l , n - l - l  terms in (22), we obtain 

x [2iP‘f’(0)01,002i-1,n-2i+ ( n  - 2i)P”’(0)00,102i,n-2i-11 

+ nF,P”‘( 0)0 l,OOO,lOn- 

+ 5’ Hi[ P”( 0)O0, ,Oi , ,  - , - + iP’( i -  - 
i = O  
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+ ( n  - 1 - i)P"(o)oo,,oi,n-l-i] 

1/2 ( f l - l )  

+ c F2i( n -2i)2i(P"'(0)01,000,1 + P"(0)01*1)02i - l ,n-2 i  
i = l  

1' (V2Hi)@i,n-l-t 
i  =O 

a2J 
0 i,n - 1 - i 

a2J 
+ 2  k2 ( O i i l . n - 2 - i  + 

i=o axa0i,n-2-i 

a*] 
(0 i 4 1 ,n -2 - i 0 k + l , f  + 0 i ,  n - 1 - i@k, l+  1 

r = O  k+fsn-3  aoi,n-2-iao,f 

Just as we previously deduced that aG/aOi,n-l-i( = H i )  depends only on t, x, z, and 
0, we may now deduce that a J / a 0 i , n - 2 - i  depends only on t ,  x, z, 0, 
Therefore, we may identify ( n  - 1)th-order x second-order terms in (22). These are 
contained in 

and 

x [ E ( @ 2 , 0 +  @0,2) - P'(@)@O,ll+ ELo,o (@2,0+@0,2 ) .  

We may express F, in terms of Fo, using (45a). Since the coefficients of, for example, 
01,n-I-100,2 terms in (22) must be equated to zero, it follows that Fo = 0. Hence, by 
(44) and (45a) 6 = O  for allj. Therefore, since by (24) L does not depend on O,,n-l;  
there exists no Lie-Backlund symmetry of order n. We conclude that no non-linear 
equation of the type (16) can have Lie-Backlund symmetries of arbitrarily high finite 
order. 

4. Conclusion 

This investigation of equation (16) was motivated by its application to unsaturated 
flow in two dimensions. We have shown that no such equation is integrable in the 
conventional sense. This does not rule out the possible integrability of equations more 
general than (1). For example, the Burgers' equation lies at the basement of a hierarchy 
of integrable higher-order non-linear equations in (1 + 1) dimensions (Rogers and 
Sachdev 1984). 

In this work we have neglected discrete, as opposed to continuous, symmetry 
groups. This may help to explain the exact solvability of some equations which do 
not possess Lie-Backlund symmetries. For example, the (1 + 1)-dimensional non-linear 
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diffusion equation with D( 6) = e-' may be solved for certain boundary conditions 
(Fujita 1952) even though Lie-Backlund symmetries cannot exist unless D = a ( b  - 
for some fixed a and b (Bluman and Kumei 1980). Finally, we must admit that even 
after centuries of dynamical systems theory, the exact relationship between practical 
solvability and integrability is still open to further study. Even if a solution may be 
expressed in terms of familiar functions, the latter still require computation. The 
relative ease of practical solution of dynamical systems may ultimately be expressed 
in an information theoretic sense (Eckhardt er a1 1984). 
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